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The relationship between bottom water dissolved oxygen concentration, vertical stratification, and temperature was
investigated for the Neuse River estuary, North Carolina, a shallow, intermittently-mixed estuary using approximately 10
years of weekly/biweekly, mid-channel data. A generalized additive model (GAM) was used to initially explore the major
relationships among observed variables. The results of this statistical model guided the specification of a process-based
model of oxygen dynamics that is consistent with theory yet simple enough to be parameterized using available field data.
The nonlinear optimization procedure employed allows for the direct estimation of microbial oxygen consumption and
physical reoxygenation rates, including the effects of temperature and vertical stratification. These estimated rates may
better represent aggregate system behaviour than closed chamber measurements made in the laboratory and i sizu. The
resulting model describes 79% of the variation in dissolved oxygen concentration and is robust when compared across
separate locations and time periods. Model predictions suggest that the spatial extent and duration of hypoxia in the
bottom waters of the Neuse are controlled by the balance between the net oxygen depletion rate and the frequency of
vertical mixing events. During cool months, oxygen consumption rates remain low enough to keep oxygen concentration

well above levels of concern even under extended periods of stratification. A concentration below 4 mgl™

! is only

expected under extended periods without vertical mixing when bottom water temperature exceeds 15 °C, while a

concentration below 2 mgl !

is only expected when water temperature exceeds 20 °C. To incorporate the effects of

parameter uncertainty, model error, and natural variability on model prediction, we used Monte Carlo simulation to
generate distributions for the predicted number of days of hypoxia during the summer season. The expected number of
days with a dissolved oxygen concentration less than 4 mg1~ ! is 46-8 with a standard deviation of 4-7, while 23-8 days
are expected to have an oxygen concentration below 2 mg1~ ! with a standard deviation of 4-2 days. When joined with
models relating nutrient loading and productivity to benthic and pelagic respiration rates, this model will be useful for
probabilistically predicting the impact of nutrient management on the frequency of low oxygen events.
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Introduction

Oxygen deficiency is a serious problem in many
estuaries and coastal waters (Diaz & Rosenberg,
1995). Documented impacts of hypoxia on aquatic
organisms include reduced habitat availability,
increased susceptibility to disease and predation, and
direct kill events (Pihl ez al., 1992; Dauer ez al., 1992;
Winn & Knott, 1992). Oxygen depletion in estuarine
bottom waters results from chemical and biological
oxygen consumption associated with the decomposi-
tion of organic matter in the sediments and water
column. Sources of organic matter may include
external watershed loading or internal nutrient-driven
algal production (Paerl er al., 1998). In an effort to
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control hypoxia and its detrimental effects, many
coastal states are proposing watershed management
actions intended to reduce benthic and pelagic oxygen
demand by limiting nutrient loading and resultant
algal stimulation. However, the severity of oxygen
depletion in the bottom water of estuaries depends on
several factors in addition to oxygen demand, includ-
ing frequency of mixing, vertical density stratification,
and exchange of oxygen with the surface layer. In deep
estuaries, or those for which mixing is controlled by
spring-neap tidal cycles, large areas of hypoxic bottom
water may persist for weeks or even months (Officer
et al., 1984). However, in shallow estuaries, vertical
mixing due to wind and river flow occurs frequently
enough to control the spatial and temporal extent of
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low oxygen events (Turner er al., 1987). Given the
important role that physical factors play in determin-
ing the frequency and extent of hypoxia, the impact of
nutrient reduction is likely to be highly nonlinear
(Kemp er al., 1992; Lohrenz ez al., 1997). Therefore,
understanding the interplay between respiration,
reoxygenation, and the timing of mixing events
is important to predicting estuarine response to
proposed management actions.

Previous efforts at estuarine oxygen modelling have
focused on deeper bays with seasonal or spring tide
mixing (Kemp & Boynton, 1980; Officer er al., 1984;
Kuo et al., 1991; Kemp er al., 1992). While the
relatively long time scale of mixing processes in
these systems has facilitated the estimation of oxygen
budgets, such models were not developed to predict
estuarine response to changed conditions. A
difficulty in using these models to inform long-term
management decisions has been their reliance on
detailed processes with many unobservable rates and
parameters. While such highly mechanistic models
may be conceptually appealing, practically they make
confidence in the parameter selection process difficult
(Reckhow, 1994a). System-specific field data at the
appropriate level of detail generally does not exist for
even the most highly studied estuaries. As a result,
modellers have either had to resort to using tabulated
values derived from a variety of aquatic systems
(Officer et al., 1984), rely on the results of controlled
laboratory incubations (Kemp ez al., 1992), or limit
the interpretation of their models to hypothetical
diagnostic studies (Kuo et al., 1991).

For periodically-mixed estuaries in which oxygen
patterns are controlled on shorter time scales, the
quantification of process rates and parameters is even
more challenging, and oxygen modelling has been
limited to simple approximations (Turner ez al., 1987;
Stanley & Nixon, 1992). While these predictions
may provide first estimates, their assumptions of con-
sistency and linearity may not be appropriate, and
they were not developed to elucidate expected
changes in response to management. Additionally,
neither the highly mechanistic nor the very simplistic
approaches have provided estimates of the inherent
uncertainty resulting from both natural variability and
model error. This lack of uncertainty information
makes it difficult to evaluate candidate models based
on their predictive ability and reduces the models’
utility for rational environmental management and
decision-making (Reckhow, 1994b).

An alternative to previous efforts at estuarine
modelling is to allow the scale of model specification
to be determined by the availability of relevant obser-
vational data (Reckhow, 1999). Thus, model process

rates and parameters can be derived using existing
field data. This approach can be expected to produce
relatively simple models that achieve a practical com-
promise between complexity and utility. Such models
will likely focus on predicting aggregate system behav-
iour rather than fine detail. Prediction of aggregate
response to large scale management actions is gener-
ally consistent with the needs of decision-makers
(Walters & Holling, 1990; Reckhow, 1999) and has
the additional advantage of being well supported by
site specific observation. Simpler models that are
empirically parameterized can also be practically
subjected to a rigorous uncertainty analysis and are
more easily communicated to decision-makers and
stakeholders involved in the management process.

We describe the development of a predictive oxygen
model for the Neuse River estuary, North Carolina.
Because of the empirical nature of our approach, our
modelling methodology relies on the results of data
analysis and statistical exploration. Therefore, we
deviate slightly from the conventional organizational
structure in this paper. We begin with a description of
the study site and sampling protocol, followed by an
analysis of the patterns of interannual and seasonal
variation for observed variables expected to control
oxygen concentration. We then explore the major
relationships among these variables using a general-
ized additive model (GAM). Based on these results, a
process-based model of oxygen depletion is specified
that is consistent with established theory yet is simple
enough to be empirically parameterized using least
squares optimization. This formulation has the
advantage over a strictly empirical model, such as the
GAM, in that process rates related to benthic
respiration and vertical reoxygenation are explicitly
estimated. These rates based on field data are easier to
estimate and may better represent aggregate system
behaviour than closed chamber measurements made
in the laboratory or in situ. Model results suggest
additional simplification which lend insight into sys-
tem behaviour and improve computational efficiency.
Parameter and model uncertainty, as well as natural
variability, are then incorporated into the model using
Monte Carlo simulation to generate probabilistic pre-
dictions about the frequency of hypoxic conditions.
The ecological significance of the predictions is then
discussed, with a focus on extending the approach to
other aspects of the estuarine system that are of
interest to the public and decision-makers.

Study site

The Neuse River originates north of Durham, NC,
and flows approximately 320 km through the central
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FI1GURE 1. Neuse River estuary and location of the mid-channel sampling stations.

piedmont to the coastal plain and comprises a water-
shed area of 16 108 km?. The major land uses in the
basin are agriculture (35%) and forestry (34%) with
the remainder consisting primarily of urban areas,
wetlands, scrub, and open water (NC Department of
Environment, Health and Natural Resources, 1993).
The upper portion of the basin includes much of
North Carolina’s Research Triangle (defined by the
cities of Raleigh, Durham, and Chapel Hill), an area
that has experienced economic prosperity and rapid
population growth since the 1970s. Population
expansion and development are also occurring in
lower portions of the basin with an increasing coastal
population and a growing commercial hog-farming
industry.

The Neuse River estuary (Figure 1) has received
considerable attention in recent years due to excessive
algal blooms, frequent periods of low dissolved
oxygen, and extensive fish Kkills. These problems have
been attributed to the high nutrient loading that
generally results from the kinds of changes that have
occurred in the watershed over the past several
decades (McMahon & Woodside, 1997; Paerl et al.,
1995). Nutrient management options, including

riparian buffers and best management practices, are
being considered to control nutrient inputs, and
the establishment of Total Maximum Daily Loads
(TMDLs) to further regulate nutrient loads is
expected in the near future.

The Neuse Estuary is characterized as an
intermittently-mixed estuary (Luettich er al., 1998).
The shallow average depth (<4 m) combined with
the protection from tides offered by the Outer Banks
means that wind is the primary mechanism control-
ling vertical mixing (Rizzo & Christian, 1996;
McNinch & Luettich, 1998). Thus, depending on
wind conditions, the estuary may be anywhere from
vertically homogeneous to highly stratified. The
vertical temperature gradient in the Neuse is
generally minor, and density stratification is driven
primarily by salinity differences resulting from
saltwater intrusion (Christian er al., 1986). Previous
studies have noted the correlation between low
bottom water oxygen concentration and vertical
salinity gradient in the Neuse (Paerl er al., 1998),
however this relationship has not been quantified
and there are no published attempts to model the
oxygen dynamics.
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Sampling protocol

Measurements of dissolved oxygen concentration,
water temperature, and salinity are part of a long-term
data set managed by investigators at the Institute of
Marine Sciences (IMS), Morehead City, NC. Data
were contributed by researchers at IMS, East
Carolina University (ECU), the North Carolina
Division of Water Quality (DWQ) and the
Weyerhauser Corporation. Sampling consisted of
vertical profiles collected at multiple mid-channel
locations spanning the gradient from freshwater to
saline conditions and were collected at approximately
two week intervals for the period March 1985 to
February 1989 and January 1994 to May 1997 and
weekly from June 1997 to January 1999. Measure-
ments during the first sampling period were obtained
using a YSI Model 57 oxygen meter and a YSI Model
33 meter for temperature and salinity (Boyer er al.,
1994). During the second period, a HydroLab
H20 datasonde probe was used (Paerl et al., 1998).
Sampling locations used in the present analysis
were chosen based on temporal coverage as well as
proximity to areas of oxygen concern. The focus of
this study was on a mid-estuarine, mesohaline
location identified as River Marker 9 (RM9;
Figure 1). Samples were collected at RM9 during
both sampling periods and it is in the vicinity of an
historically high number of fish kills believed to be due
to low oxygen. Average depth at RM9 is 4 m. To
examine the generality of the model form and com-
pare the spatial variability of parameter values, the
process-based model was also parameterized using the
data of River Marker 15 (RM15). RM15 is located
approximately 15 km upstream of RM9 (Figure 1)
and has an average depth of 3 m. Data were collected
at RM15 only during the second sampling period,
January 1994 to January 1999.

In addition to the weekly/biweekly samples, this
study uses time-series data obtained at a mooring
located near RM9. Measurements were taken of tem-
perature, conductivity and salinity (determined from
temperature and specific conductance) at near-surface
and near-bottom depths. The data were collected
using two InterOcean S4 electromagnetic current
meters deployed 75 cm above bottom and 75-125 cm
below surface. Average water depth at the mooring is
4 m. The mooring was established in August 1997
as part of the Neuse River Estuary Modeling and
Monitoring Project (McNinch & Luettich, 1998).
The meters were initially programmed for a sampling
rate of 2 Hz for 5 min out of every 30 min until June
1998, when the rate was changed to 3 min out of every
15 min. Meters were serviced every 8-10 weeks, and

temperature and conductivity measurements were
verified with an independently calibrated HydroLab
Surveyor 3 and H20 CTD (McNinch & Luettich,
1998).

Observational data analysis

The annual distribution of bottom water dissolved
oxygen concentration at RM9 shows no obvious trend
over the past 15 years (Figure 2). There is some
variability from year to year, however this variation is
mainly in the extreme values with the median concen-
tration remaining relatively constant at just over
6 mg1~'. This constancy is also true for the bottom
water temperature, the distribution of which has not
changed from year to year, even at the extreme values.
The salinity gradient (difference between measure-
ments in the bottom and top layers) at this location
also shows no clear trend, although the variation in the
highest measured values may be substantial.

Dissolved oxygen concentration exhibits a distinct
seasonal pattern (Figure 3) characterized by a summer
minimum with median values as low as 2mgl~ ! in
July. Within-month variability also depends on sea-
son, with a wider spread in observed values in summer
than in winter. Bottom water temperature follows the
expected seasonal cycle, with a summer peak and
winter trough. Within-month variability is relatively
minor and consistent throughout the year. Salinity
gradient values show no clear pattern. Neither median
values nor extremes show distinct seasonal differ-
ences, although within-month variability is high.
While the monthly distributions of dissolved oxygen
and temperature appear to depend on the time of
year, stratification, as measured by salinity gradient,
appears to have a consistent underlying distribution
throughout the year. Thus, stratification alone is not
enough to generate hypoxic conditions, and warm
water temperature is likely an important contributing
factor.

Data from the continuous monitoring station
(Figure 4) show that the salinity gradient is highly
variable. However, the time-series record is marked by
periods of mixed conditions indicated by a near-zero
salinity gradient, followed by periods in which the
gradient increases approximately linearly with time. It
is likely that these periods of steadily increasing strati-
fication correspond with extended periods of calm
wind and flow conditions. Intermittent sharp declines
in stratification suggest vertical-mixing events caused
by wind or flow changes that return the salinity
gradient to near zero. Certainly there is noise super-
imposed on this piecewise linear pattern, perhaps due
partly to winds of insufficient strength to fully mix the
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FIGURE 2. Box-and-whisker plots by year of observed values at RM9 for (a) bottom water dissolved oxygen concentration
(mgl1~ 1), (b) bottom water temperature (°C), and (c) salinity gradient. The box represents the range of the first and third
quartile, the line through the box represents the median, and the whiskers represent outliers within 1-5 times the inter-quartile
range. Samples were not collected throughout the full calendar year in 1985, 1989, and 1999, resulting in the incomplete

distributions shown in the figure.

system, however the pattern appears consistent and
can also be seen in the salinity records of other
intermittently mixed estuaries (e.g. Stanley & Nixon,
1992).

Statistical modelling

Statistical modelling methodology

To explore the relationships among the measured
variables, we used a generalized additive model
(GAM) (Hastie & Tibshirani, 1990; Reckhow &
Qian, 1994). GAM methods rely on visualization,

bivariate smoothing, and an additive functional form.
The method provides a non-parametric alternative to
linear regression when the relationship between the
response variable and predictors is nonlinear and a
parametric relationship is not obvious. In this context,
non-parametric does not refer to rank-ordering
procedures, such as the Mann-Whitney or Wilcoxon
tests, but rather the absence of a parameterized
model defining the relationship among observed vari-
ables. In a GAM, the traditional linear function of the
predictor variables is replaced by a non-parametric
smoothing function. This results in the following
model form:
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FIGURE 3. Box-and-whisker plots by month of observed values at RM9 for (a) bottom water dissolved oxygen concentration
(mgl~ 1), (b) bottom water temperature (°C), and (c) salinity gradient. The box represents the range of the first and third
quartile, the line through the box represents the median, and the whiskers represent outliers within 1-5 times the inter-quartile

range.

Y=o+ Zp:fi(Xj)+£ @Y
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where a is the overall mean of Y, f; is a smoothing
function for the predictor variable X, and ¢ is an error
term. The smoothing functions are estimated itera-
tively one predictor variable at a time using a back-
fitting estimation algorithm. The resultant smoothing
function describes locally persistent patterns in the
data attributable to each predictor variable. Although
the function is non-parametric, plots of smoothing
functions together with partial model residuals can aid
in data visualization and selection of appropriate func-
tional forms for parametric model construction. We

used the version of GAM included with S-Plus®
(Chambers & Hastie, 1992) which employs a local
error sum of squares smoother.

Statistical modelling results

The results of the GAM fit to the RM9 data with
dissolved oxygen as the response variable and
salinity gradient and bottom water temperature as the
predictors indicate that both variables are important
in determining bottom water oxygen concentration
(Figure 5). The contribution of water temperature to
dissolved oxygen is very nearly linear, with lower
expected concentration at high temperature. The
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FIGURE 4. Measured salinity gradient for two periods as recorded by the continuous monitoring station near RM9. The
points represent measurements taken at 30 min intervals and the lines represent average daily values.

direction of this relationship might be expected based
on the effect of temperature on oxygen saturation
values, however the magnitude of the temperature
effect is greater than twice that expected due to
changes in saturation values alone (Hyer ez al., 1971).
Salinity gradient also has a clear relationship with
dissolved oxygen. However this relationship is non-
linear with sharp declines in oxygen upon initial
increases in gradient and a reduced slope at higher
values. This observation suggests that the net rate of
oxygen depletion at a fixed temperature is controlled,
at least in part, by factors other than the vertical
reoxygenation rate. It should also be noted that the
distribution of salinity gradient values (Figure 5) does
not show a bimodal pattern in which the system is
either °stratified’ or ‘not’. Rather, there are many
days with a low salinity gradient, and higher values are
increasingly rare. This is consistent with the observa-
tions from the continuous monitoring data (Figure 4).

Both surface and bottom algal density, as measured
by chl a on corresponding sampling days, were also
initially included as predictor variables in the GAM.
Algal photosynthesis and respiration have been shown

to exert a significant influence on dissolved oxygen
concentration in some estuarine systems (Kemp er al.,
1992). However, at RM9 in the Neuse Estuary,
bottom water dissolved oxygen did not exhibit any
relationship with contemporaneous chl a when it was
included as a predictor together with salinity gradient
and bottom water temperature (not shown). This
suggests that net algal respiration, as captured by chl a
measurements, is relatively minor in the lower portion
of the water column in relation to other mechanisms
of oxygen depletion, including benthic and water
column oxygen uptake by bacteria.

Dissolved oxygen exhibits a close association with
salinity gradient and bottom water temperature as
revealed by the GAM. Using the square of the corre-
lation between observed and predicted values as a
measure of descriptive ability (analogous to R? in
parametric models), these two predictor variables
describe 77:5% of the variation in the response. If
predicting oxygen concentration at a specific salinity
gradient and temperature were the goal of a modelling
effort, this GAM would do very well. However, for
guiding management and decision-making, the model
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FIGURE 5. Partial residual plots of the smooth functions
used in the GAM developed for RM9. The solid lines
represent the individual contributions of salinity gradient
and bottom water temperature to predicted dissolved oxy-
gen concentration after subtracting the overall mean. The
dotted line represents =+ one standard error from the mean
fitted value. Plotted points in each plot represent the model
residuals after accounting for the fitted effect of the other
predictor variable. Tick marks along the horizontal axis
indicate the distribution of salinity gradient values.

is not very useful. Neither of the predictor variables
can be linked to management actions intended to
control hypoxia, nor are there specific process rates
that can be adjusted based on expected changes.
Therefore, the GAM is most useful in guiding the
development of the process-based model.

Process-based modelling and empirical rate
estimation

Model formulation

Due to the longitudinal extent of hypoxia in the Neuse
Estuary (Paerl er al., 1998) and the long water resi-
dence times (Christian ez al., 1986), we assume that
net horizontal oxygen transport is minor for a location
in the middle section of the estuary. Therefore, the
concentration of dissolved oxygen in a vertically
averaged parcel of bottom water can be described by
the rate equation:

%‘: _Rd +Rv (2)
where C is the average concentration of dissolved
oxygen in the lower water column (mgl '), z is the
time since the last vertical mixing event (d), R, is the
combined benthic and lower water column oxygen
demand (mgl~'d~ "), and R, is the vertical oxy-
gen exchange rate from the upper water layer
(mgl 'd~!) (Officer er al., 1984). This equation
states that the net rate of oxygen concentration
change in the bottom water is determined by the
relative magnitudes of the consumption rate and the
reoxygenation rate across the pycnocline.

At low water velocities, the oxygen demand, R,
has been found to be linearly related to oxygen
concentration according to the expression,

R=k,C (3)

where %, is the rate constant (d ~ ') (Phoel ez al., 1981;
Moore et al., 1996; Park & Jaffe, 1999). First-order
rate constants are generally considered to have a
temperature dependency according to the Arrhenius
formulation,

ky(T)= deOHdTi 20 @

where T is temperature (°C), k,,, is the rate constant
at 20 °C, and 0, is a constant representing the level of
temperature dependency (Bowie ez al., 1985; Chapra,
1997).

Vertical oxygen exchange in estuaries is generally
considered to be dominated by diffusive, rather than
advective, processes (Officer, 1976). Therefore the
exchange rate can be expressed as proportional to the
oxygen concentration gradient across the pycnocline:

R,=k,(C,— O 5)

where C, is the oxygen concentration in the upper
layer, and %, is the vertical exchange coefficient (d ~ ')
(Officer er al., 1984; Kuo er al., 1991; Kemp ez al.,
1992). Density differences between the surface and
bottom layers reduce turbulent kinetic energy and
thus can be expected to reduce the vertical exchange
coefficient. Munk and Anderson (1948) proposed a
modification of k, according to:

k,

k= ¥ aR) ©

where k' is the exchange coefficient at Ri=0, a is a
constant, and
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is the Richardson number where g is the acceleration
due to gravity, p is the water density, 2z is depth, and «
is horizontal velocity. More complex parameteriz-
ations have been developed since Munk and Anderson
proposed Equation 6, but we chose this formulation
because it is relatively simple and has been found
to provide a reasonable estimate of the effect of
stratification on vertical exchange (Geyer, 1993).

In the Neuse Estuary, the vertical density gradient is
primarily the result of salinity differences. Therefore,
we can express the dp/dz term in Equation 7 as
proportional to the measured salinity gradient. Unfor-
tunately, we do not have sufficient velocity data with
which to determine du/dz. Therefore, we consider
this term to be a constant, and the effects of its
variation become a source of unexplained model
error. Applying these assumptions, Equation 7 is
approximated by

Ri=c(AS) 8)

where ¢ is a constant of proportionality and 4S is the
salinity difference between the surface and bottom
layers. Using this approximation together with
Equation 6, the vertical exchange rate can be written
as

k.
RUZW(Q‘_C) )

where b is a constant equal to ¢ X a.

Vertical diffusion in an estuary is generally
dominated by turbulent processes (Officer, 1976).
However, if molecular diffusion is a non-negligible
component of net vertical exchange, &', may be a
function of temperature. For generality, we allow %',
to vary with temperature according to the Arrhenius
formulation,

K (D)= 100,72 (10)
where %', is the rate constant at 20 °C, and 0, is the
temperature dependency constant (Bowie ez al., 1985;
Chapra, 1997). Substituting Equations 3 and 9 into
Equation 2 yields the full parameterization,

dc k.

52(CmC) ()

ECH— b
dr 7 (1+bAS

where k; and k', have temperature dependencies
according to Equations 4 and 10.
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Equation 11 is a differential equation expressed in
terms of 7, ¢ time since the last vertical mixing event ’.
Unfortunately, measurements do not exist of this
critical quantity. However, by relating ¢ to an observed
system variable, empirical parameter estimates can
still be developed. The continuous time-series of
salinity measurements suggests that salinity gradient
grows approximately linearly from zero with time after
a major vertical mixing event according to,

AS=rt 12)
where r is the rate of increase (d ~!) and 4S and ¢ are
as previously defined. While this rate of increase may
vary between stratification events depending on flow
and other conditions, an average rate captures aggre-
gate system behaviour. The short duration of the
continuous time-series prevents direct estimation of
r from the data. However, the value of r can be
indirectly estimated by comparing the observed fre-
quency of salinity gradients from the weekly/biweekly
data with an estimated frequency of times between
vertical mixing events. This frequency-based
approach is consistent with the probabilistic model of
hypoxia described in the next section.

If extreme wind and flow conditions are assumed to
be the mechanisms of vertical mixing, the occurrence
of mixing events can be modeled by a Poisson process
(Devore, 1991), with the number of mixing events
occurring in any time interval assumed to be indepen-
dent of the number occurring prior to this interval.
Under this assumption, the frequency distribution of
time between mixing events is represented by an
exponential density function,

el )=le *

(13)

where A is the rate parameter and 1/4 is the average
time between events. Using the expert elicitation
technique described in Morgan and Henrion (1990),
a frequency distribution representing the number of
days between mixing events was assessed from one of
the authors (R. Luettich). His assessments were based
on experience with circulation and transport including
flow profiles, mid-channel observation, and wind
measurements in the Neuse Estuary. The elicitation
method we used was based on a series of questions to
Luettich aimed at establishing points on the cumula-
tive distribution function (CDF). The fixed value
approach (Morgan & Henrion, 1990) was used in a
frequency context in order to minimize assessment
bias (Anderson, 1998). A typical question was, ‘ If you
were to observe 100 vertical mixing events, what is
your assessment of the number that would be less than
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x days apart ’. The resulting CDF was best described
by an exponential distribution with an average time
between mixing events of seven days and a duration
of mixing events of two days. Using this estimate,
the distribution of time between mixing events
becomes,

p (:=0)=2/9
FD)=(T19%e " >0 (14)

where 4=1/7. Substituting Equation 12 into Equation
14 and normalizing gives,

p(48S=0)=2/9
FASI D)= (719 r e~ 45" §>0 (15)

Thus, after disregarding the lowest 2/9 of the observed
values which are assumed to have been collected while
a mixing event was occurring, the salinity gradient,
A4S, can be expected to have an exponential distribu-
tion with rate parameter A, (=4/r). At RMO9, the lowest
2/9 of the values corresponded to those with 4S<0-1.
The remaining values were fit using the distribu-
tion fitting capability of Crystal Ball® software
(Decisioneering Inc., 1996), resulting in an estimate
for the rate parameter, 4, of 0-32 (Figure 6). This
yielded an estimated average value for r of 0-143/
0-32=0-45.

Substituting Equation 12 into Equation 11 gives the
dissolved oxygen rate relation in terms of the observed
variable, 4S8,

dC _ &, K,

ES'_ 7 Z(Cu_c) (16)

r(1+bAS)?

To solve Equation 16 we expressed the initial value
of the oxygen concentration in the lower water col-
umn (at 48=t=0) as an unknown percent, 100p, of
C,, to be estimated from the data. Because the initial
condition represents a well-mixed water column, the
value of p is expected to be near one. Solving Equation
16 yields,

—k,AS 2%
C(AS)=Cuexp< Candit v )

br/1+bAS

(e
exp| —— | ———
kA r o \br/1+bAS

ry (14 bx)3?

dx | (17)

Together with Equations 4 and 10, Equation 17
relates the observed variables, C, C,, 4S, and T
through the parameters k4,0, 03 & 20, 0, p> and b, all
of which can be estimated from the available data.

Parameter estimation methods

Parameter estimation was performed using the non-
linear least squares routine included in S-Plus®™
(Chambers & Hastie, 1992). To prevent the
routine search method from entering portions of the
parameter space in which Equation 17 is undefined,
ka0 and k', ,, were reparameterized as exp[k” ;0] and
explk”,20], where k", and k" ,, equal In(k,,,) and
In(%’ o) respectively. This reparameterization assured
that the rate constants as expressed in Equation 16
would maintain positive values. The parameters &” ;,,
and k”,,, were assumed to have normal distributions,
and the mean, m, and standard error, se, were esti-
mated. This implies that in their original metrics, &
and k' ,, each have lognormal distributions. Because
of the skewness of the lognormal distribution, the
median was chosen as an indication of the centre of
the distribution, and the 95% confidence interval was
chosen as an indication of spread. For a lognormally
distributed parameter, f, these are calculated as,

Med(f) =exp(m), and
C.lgs50,=exp(u + 1-96SE) (18)
(Crow & Shimizu, 1988).
For a normally distributed parameter, the median is

equal to the mean and the 95% confidence interval is
the unexponentiated form of Equation 18.



TABLE 1. Least squares parameter estimates for RM9

Model Estimated value
parameter (median) 95% Confidence interval
R0 0-113 (0-075,0-171)
0, 1-13 (1-08,1-18)
R 20 0-052 (0-010, 0-276)
n 0-986 (0-895, 1-08)
b —0-012 (—0-124,0-101)
P 0-933 (0-893, 0-973)

Error sum of squares=493-1; df=219; R>=0-791.

Model simplification

The empirically parameterized process-based model
was found to fit the data at RM9 very well (Table 1).
The R? value indicates that approximately 79% of the
variation in oxygen concentration is described by the
model. Furthermore, examination of the empirical
parameter estimates suggests that some additional
model simplification may be appropriate. The esti-
mated value of 6, is very close to one, indicating that
the temperature dependence of the vertical exchange
coefficient is minor. This implies that temperature-
insensitive turbulent processes dominate temperature-
sensitive molecular processes, as expected in an
estuary. The estimation of p is also close to one,
implying that the lower water column oxygen concen-
tration upon mixing is close to the oxygen concen-
tration in the surface layer, as expected. In addition,
the estimated value of b is very close to zero, indicat-
ing that the influence of the salinity gradient on
reoxygenation is apparently minor. Examination of
Equation 7 reveals a possible explanation. The
assumption made in developing Equation 8 was that
all terms other than dp/dz in Equation 7 could be
considered independent of 4S. In reality, the gradient
of horizontal velocity with depth, or shear, is likely to
increase as the salinity difference between the layers
increases, at least partially offsetting the effects of
differences in buoyancy. The result is that although
A4S may vary, Ri may be relatively constant, and the
vertical exchange coefficient may be considered to be
a constant with respect to A4S, consistent with an
estimated value of 4 close to zero.

To determine whether simplification of the process-
based model is desirable, we used the extra sum of
squares F-test. For nested nonlinear models, this test
is preferable to a t-test for judging whether restricted
models with fixed parameters are preferable to the
unrestricted form (Bates & Watts, 1988). The F
statistic is calculated as:
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TABLE 2. Model F statistics as compared to unrestricted
model for RM9

Model restriction

0,=1 p=1 =0 0,=1,b=0

Error sum of squares 493-4 517-1 493-3 493-3
df 220 220 220 221

F statistic 0-133 10-6“ 0-089 0-044
“Significant at the 0-01 level.
(ess,—ess,)/(df,.—df,)
~Fog,—agar, (19)

mse,

u

where ess, and ess,, are the restricted and unrestricted
error sums of squares, respectively, df, and df,, are the
restricted and wunrestricted degrees of freedom,
respectively, and mse,, is the mean squared error of the
unrestricted model (mse,=ess,/df). Simplification is
appropriate if restricted forms of the model do not
result in an error sum of squares that is significantly
higher than that of the unrestricted form, as indicated
by the F-statistic.

Results of the F-tests (Table 2) indicate that the
best-fit model is one in which b is restricted to zero
and 6, is restricted to one, but p is left as a free
parameter. The restricted form of Equation 11 then
becomes:

dC k k;

2 = Mo+ _
dAS rC r (€= (20)

where k", is neither a function of salinity gradient

nor temperature. This rate relation has the
computationally simpler analytic solution,

C, [p(k;{+kd) + k! {exp <<kad>AS>— 1}]
C= 4 21)

B ((k;{+kd)AS>
r

(K + ky)exp

Model results and discussion

Process rates estimated for the best-fit model
(Table 3) are generally consistent with values reported
previously for the Neuse and other partially mixed
estuaries. For eight mid-estuarine locations in the
Neuse, measurements of benthic oxygen demand
made in a laboratory chamber at 20 °C and an oxygen
concentration of 6:0 mgl~ ! were reported to have a
mean of 0:70 gm ~ 2d "~ ! and a standard deviation of
0-16gm 2 a (Alperin et al., 1998). In situ sediment
measurements taken at six locations with varying
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TABLE 3. Least squares parameter estimates for best-fit
model at RM9

Model Estimated value
parameter (median) 95% Confidence interval
Ras0 0-114 (0-086, 0-151)
. 1-13 (1-11, 1-16)
k", 0-058 (0-029, 0-114)
p 0-932 (0-893, 0-971)

Residual standard error=1-49; R>=0-791.

temperature and oxygen concentration were reported
to be 0:90+0-38gm *d ! (Sauber, 1998). To
date, measurements of net diurnal lower water
column oxygen demand in the Neuse have not
been made. By using monitoring data to empirically
estimate net consumption rates, our model captures
the sum of benthic and pelagic processes. Addition-
ally, use of field data in estimating oxygen budgets
may better represent long-term field conditions by
inherently integrating over time and space (Kemp &
Boynton, 1980; Swaney et al., 1999). Assuming a
lower water column thickness of 1-5 m (Alperin ez al.,
1998) our empirically estimated oxygen consump-
tion rate constant, k,,, corresponds to a combined
benthic and integrated lower water column oxygen
demand of 1-02gm 2d ! at an oxygen concen-
tration of 6-:0 mg1~ . When compared to the labora-
tory and field measurements of sediment oxygen
demand, this result suggests that benthic processes
compose the bulk of the oxygen depletion rate, and
net water column demand is relatively minor. This
may be a general result for shallow, stratified systems
(Kemp et al.,, 1992). While temperature effects on
respiration have not been previously explored for the
Neuse, values for 6 reported in the literature
range from 1:02 to 1-13 (Bowie er al., 1985). The
model-derived value falls at the high end of this range.

The estimated vertical exchange -coefficient,
k" ,0» corresponds to a reoxygenation rate of
0:69gm 2d~ ' when the oxygen gradient is
6:0 mg1~!. Although measurements of this quantity
have not been made for the Neuse, our value is in
agreement with values estimated for other systems
under stratified conditions (Kemp & Boynton, 1980;
Bulleid, 1983; Kemp ez al., 1992).

Overall system behaviour can be best depicted by a
surface representing predictions of dissolved oxygen
concentration as a function of time since the last
mixing event and water temperature. Because oxygen
concentration in the upper water column is generally
at saturation, C, can be related to water temperature

according to the empirical formula (Hyer ez al., 1971),

C,=13-686 — 0-34663T+0-00450 T (22)
assuming an average salinity of 10. This relationship
allows bottom water oxygen to be expressed as a
function of time and water temperature alone. Salinity
effects were not explicitly included in Equation 22,
because they are relatively minor compared to the
effects of temperature, and, unlike water temperature,
salinity is not predictable. Therefore, any effects of
salinity changes become part of the variance not
explained by the model.

The shape of the prediction surface (Figure 7)
shows that dissolved oxygen decreases exponentially
with time after a mixing event and that the rate of this
decrease increases at higher temperature. As Equation
20 indicates, the rate of change of oxygen concen-
tration is determined by the relative magnitudes of
oxygen demand and reoxygenation. At low tempera-
ture, the oxygen demand coefficient is low and the
vertical exchange coefficient is relatively high, such
that the two processes are nearly in balance and
dissolved oxygen remains at high levels, even under
extended periods of stratification. At higher tempera-
ture, the initial oxygen concentration is lower due to
changes in the saturation value. Additionally, the
oxygen demand increases and dominates reoxygen-
ation, such that dissolved oxygen in the lower layer
decreases rapidly. However, as the vertical oxygen
gradient grows, reoxygenation increases and the rates
of the two processes eventually reach equilibrium.
The result is that an oxygen concentration less than
4mgl ! is only expected under extended periods
without mixing at a temperature exceeding 15 °C,
while a concentration less than 2mgl~ ! is only
expected when temperature exceeds 20 °C.

Comparison of process rates across locations

To test the generality of our results, we applied the
process-based model in Equation 22 to the data
collected at RM15. We assumed that the mixing rate
would be the same at the two stations due to their
proximity and the similar orientation of the channel at
these two locations. However, because the salinity
gradient values at RM15 were best fit by an exponen-
tial distribution with rate parameter equal to 0-22 (not
shown), the value of r was modified to be 0-64. This
higher value implies that stratification sets up more
quickly after a wind mixing event at RM15 than at
RMO9, perhaps due to its proximity to the source of
freshwater flow. To accommodate differences caused
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FIGURE 7. Surface representing predicted dissolved oxygen values at RM9 over the range of observed bottom water

temperatures and salinity gradients.

by flow and bathymetry, the remaining parameters
were allowed to differ by location.

Estimated parameter values for RM15 (Table 4) are
similar to those estimated for RM9. After accounting
for the reduced depth at this location (bottom layer
thickness assumed to be 1 m) estimates of oxygen
demand and vertical exchange rate are nearly identi-
cal. This is consistent with the findings of Alperin ez al.
(1998) which note minor variation in oxygen demand

TABLE 4. Least squares parameter estimates for RM15

Model Estimated value

parameter (median) 95% Confidence interval
R0 0-186 (0-140, 0-247)

0, 1-12 (1-09, 1-14)

k" 420 0-072 (0-036, 0-142)

P 0-959 (0-901, 1-01)

Residual standard error=1-54; R>=0-778.

among mid-estuary locations. Model fit is also similar,
as indicated by the high R? value, indicating that the
model is robust with respect to location.

Short term oxygen dynamics and model verification

Our model was fit to weekly/biweekly data because
they were collected at regular intervals over a number
of years. However, these data do not lend insight into
the ability of the model to reproduce short-term
oxygen dynamics. To address this issue, we applied the
model to a set of daily data collected intermittently
since 1989 by the U.S. Geological Survey. This data
set consists of 1101 daily observations of salinity, tem-
perature, and oxygen concentration in the surface and
bottom layers at RM9. Of these 1101 observations,
784 were collected in different years from the weekly/
biweekly data, while most of the remainder were
necessarily collected on different days because of the
difference in sampling frequency. Therefore, this data
set provides an opportunity for model verification.
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FIGURE 8. A representative two-month period of verification data comparing predicted (line) and observed (points) bottom

water oxygen concentrations.

The model parameters estimated from the
weekly/biweekly data for RM9 (Table 3) were used in
Equation 21 to predict bottom water oxygen concen-
tration for the days corresponding to the daily USGS
data. The overall model fit can be measured by the R?
value of 0704 and the residual standard error of
1:67mgl~!. Considering that model parameters
were not optimized to this verification data set, these
reasonable results increase our confidence in applying
the model to new time periods.

A representative two-month time period comparing
predicted and observed oxygen concentrations
(Figure 8) reveals the ability of the model to represent
the short-term dynamics of oxygen depletion. The
time-series shows periods of declining bottom water
oxygen concentration periodically interrupted by mix-
ing events which bring the concentration back near
saturation. As the water cools throughout this autumn
period, the rate of depletion can be seen to decrease,
while the saturation value increases. There is clearly
some scatter in the data around the model predictions,
however the model appears to reasonably represent
both short-term changes and longer-term seasonal
behaviour.

Probabilistic prediction

Monte Carlo methodology

Given our inability to anticipate precisely when
mixing events will occur or exactly what the water
temperature will be, even with a well parameterized
model we cannot expect to be able to make predic-
tions of the bottom water oxygen concentration for
any given day. This is a problem encountered when-
ever a deterministic model is employed. If it is
assumeed, however, that the mechanisms that drive

vertical mixing and temperature variation will remain
the same into the future, values for these predictors
can be described by a probability distribution for a
time period of interest. The uncertainty in estimated
parameter values, as well as overall model uncertainty,
can also be described by probability distributions. For
a relatively simple model, such as the one described
here, Monte Carlo simulation can then be used to
generate probabilistic predictions for quantities of
interest such as the number of days of hypoxia
expected in a given season (Reckhow & Chapra,
1999).

Monte Carlo simulation was performed on the
oxygen depletion model using Crystal Ball®
(Decisioneering Inc., 1996), a commercially available
add-in for Microsoft Excel®™. In specifying the distri-
butions for the Monte Carlo simulation, the results for
RMO were used. Therefore, model predictions relate
to oxygen concentration at the location in the estuary
near RM9. Recent studies of aquatic habitat in the
Neuse have noted natural breakpoints in habitat avail-
ability at 2 and 4 mg 1~ ! (Eby ez al., 1999). Therefore,
we have assessed model predictions with these values
as criteria. Because hypoxia is most frequent in the
summer, assessments focused on the summer season.

Model parameters were assigned the appropriate
normal or lognormal distributions with means,
standard errors, and correlations determined from the
least squares estimation procedure (Tables 3 and 5).
Water temperature was assigned a mixture distribu-
tion composed of three data-based month-specific
normal distributions for July, August and September
(Table 6). Based on the distribution of weekly/
biweekly surface measurements (not shown), oxygen
concentration in the upper layer is described as a
normally distributed percent saturation with a mean
equal to 100% and a standard deviation equal to 14%



TABLE 5. Parameter correlations for RM9

In(% z0) 0, In(k” o)
0, —0-347
In(%" o) 0-884 —0-386
P 0-509 —0-299 0-351

TABLE 6. Monthly bottom water temperature distributions
at RM9

Mean SD
July 27-88 0-91
August 27-51 1-46
September 24-69 1-89

and was calculated from water temperature according
to Equation 23. Time since the last vertical mixing
event was assigned the modified exponential distribu-
tion given in Equation 14. In addition to parameter
and input uncertainties, an additive error term was
included to account for the variability in oxygen
concentration not explained by the model. This error
term captures the effect of simplifications made in
model formulation and has a normal distribution with
mean equal to zero and standard deviation equal to
the residual standard error estimated for the model
(Table 3). A histogram of the model residuals (not
shown) supported the normality assumption.

Probabilistic predictions for the summer season
were generated by using the Monte Carlo method to
draw 10 000 sets of predictor variables, parameter
values, and error terms, each of which was used to
calculate a predicted oxygen concentration according
to the model. The distribution of these oxygen values
corresponds to the model-predicted oxygen concen-
tration for any given summer day, including the
uncertainty associated with parameter error, model
error, and natural variability in the predictor variables.
From this set of values, 10 000 sample sets of size 90
were drawn with replacement. Called ‘ bootstrapping ’
(Efron & Tibshirani, 1993), this procedure was used
to simulate the interannual variability in observed
daily oxygen concentration. For each set of 90 days,
the number of days with predicted oxygen concen-
tration less than 2 mg 1~ ! and less than 4 mg 1~ ' were
recorded.

Monte Carlo results

The Monte Carlo simulation indicates that the
number of days in a given summer at RM9 with
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FIGUuRe 9. Histogram of the predicted number of days
during the summer season with dissolved oxygen concen-
tration (a) <2mgl ' and (b) <4 mgl~'. One thousand
seasons of 90 days each were simulated.

oxygen concentration less than 2 mg1~ ! is predicted
to have an average of 23-8 (or 26%). Because of both
model uncertainty and interannual variability, this
value varies with a standard deviation of 4-2 days
[Figure 9(a)]. The average of the predicted number of
days with concentration less than 4 mgl ! is 46-8
(52%) with a standard deviation of 4-7 [Figure 9(b)].
For reference, 21 out of the 66 weekly/biweekly DO
observations taken during the summer at RM9 had
values less than 2mg1~ ' (31%) and 27 had values
less than 4 mg1~ ' (41%). Accounting for the size of
the observed sample, the proportions predicted by the
model and those calculated from the data are not
significantly different at the 0-05 level (Devore, 1991).
Model predictions also compare favourably with a
spatially-distributed sampling scheme conducting
during the summers of 1997 and 1998 (Eby et al.,
1999) which found an average of 25% of the middle
portion of the estuary to have an oxygen concentration
below 2 mg1~ ! and 50% to be below 4 mg1~'.

Discussion

The empirically parameterized oxygen model is
appealing in its ability to describe a large fraction of
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the observed variability in oxygen concentration.
Additionally, the derived process rates represent
aggregate system behaviour in a way that is not
captured by laboratory and field measurements.
Simplifying assumptions were made in model specifi-
cation to maintain a consistency between model detail
and the availability of data. However, when predic-
tions are expressed probabilistically, the effects of any
processes not currently considered in the model are
not ignored but become part of the prediction uncer-
tainty. Perhaps, if sufficient future observations can be
made to add additional detail to the model, a portion
of the remaining 21% variability in oxygen concen-
tration can be described. Candidates for predictor
variables include a time-lagged algal productivity
value, local flow measurements, and wind speed and
direction.

A distinguishing feature of our oxygen model is its
explicit use of expert judgment in relating salinity
gradient to time. While this assessment technique may
appear to be a subjective process, it must be kept in
mind that all modelling implicitly involves personal
judgment, whether in model formulation, parameter
selection, or the interpretation of results. In general,
we minimize subjectivity by estimating parameter
values directly from observational data. However,
when sufficient data do not exist for empirical
parameter estimation, as is the case for the parameter
r, we formalize the assessment process by using estab-
lished techniques of eliciting the value of an uncertain
quantity and describing the associated uncertainty
with a probability distribution. In this case, the
assessed distribution of time between mixing events
was of a form consistent with probability theory, thus
supporting the applicability of the method. Because
the parameter r is only used in relating salinity gradi-
ent to time, errors in its assessment would affect our
interpretation of the rate constants in Equation 20,
but would not impact model fit nor predictive ability.

The model developed in this study relates benthic
and lower water column oxygen demand to the fre-
quency of bottom water hypoxia. To predict the
effects of nutrient management actions on estuarine
conditions, the oxygen demand rate currently used in
the model can be replaced with a value estimated to
result from a long-term reduction in nutrient loading
and phytoplankton growth. If such an assessment is
also performed in a probabilistic manner, integrated
predictions of oxygen conditions can be made that
account for scientific uncertainty and natural vari-
ability. Such probabilistic predictions provide more
realistic assessments than single-values and allow for
the value of additional research and monitoring to
be made based on the degree to which such work

can reduce predictive uncertainty. The authors are
currently pursuing modelling work along these lines.
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